

UMR - CNRS 7574 Laboratoire Chimie de la Matière Condensée de Paris, Site Collège de France Groupe Nanomatériaux Inorganiques

Metal oxide nanoparticles: Synthesis and Reactivity

Corinne Chanéac

Environmental Nanotechnologies, 7-8 July 2011, Aix en Provence, France

Stage 1: List of Endpoints

- Nanomaterial Information/Identification
- Physical-Chemical Properties and Material Characterization
- Environmental Fate
- Environmental Toxicology
- Mammalian Toxicology
- Material Safety

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

List of Manufactured Nanomaterials (14)

- Fullerenes (C60)
- Single-walled carbon nanotubes (SWCNTs)
- Multi-walled carbon nanotubes (MWCNTs)
- Silver nanoparticles
- Iron nanoparticles
- Carbon black

- Titanium dioxide
- Aluminium oxide
- Cerium oxide
- Zinc oxide
- Silicon dioxide
- Polystyrene
- Dendrimers
- Nanoclays

Morphology and Nanoparticles

Formation of natural crystals in geological conditions

Aqeous Sol-Gel Process for nanoparticle synthesis

Morphology and Nanoparticles

Chem. Comm., 5, 2004, pp. 481-487

Durupthy, O.; Bill, J.; Aldinger, F. Cryst. Growth Des. 2007, 7, 2696

Morphologie et Nanoparticules

Chem. Comm., 5, 2004, pp. 481-487

Surface energy : origin

Variation of surface energy with the particle size (Sodium Chloride):

Side	Total Surface aera	Surface Energy		
(cm)	(cm²)	(J/g)	Calculation for a cube of	
0,1	28	5,6. 10 ⁻⁴	Sodium Chloride	
0,01	280	5,6. 10 ⁻³		
10 ⁻⁴ (1μ	m) 2,8. 10 ⁴	0,56		
10 ⁻⁷ (1n	m) 2,8. 10 ⁷	560	Surface Sci. 60, 445, 1976	

Huge surface energy for nano-solids - Thermodynamically unstable system

Unstability of nanometric colloidal dispersion:

Spontaneous evolution of nanoparticles to minimise the surface contribution

Surface : motive power of growth

How determine the surface energy?

Rough estimation of surface energy:

- surface relaxation
- surface restructuring with formation of new chemical bond
- same value of $\boldsymbol{\epsilon}$ for all the atoms
- no entropic consideration/ pressure or volume

Surface Sci. 60, 445, 1976

Origine de l'énergie de surface

Surface energy depends of the index of facets :

low index facets = low surface energy

Relation between surface energy and crystal shape

Shape of nanoparticle : total surface energy reaches minimum

Wulff construction

Equilibrium crystal

Bi doped with Cu

Morphologies for a 2D crystal for 10 and 11 faces

Surface energy at the atomic scale

T. Hiemstra et al., J. Colloid Interface Sci. 184, 680 (1996)

Model of multisite complexation, MUSIC²

$$\begin{split} & \mathsf{K}_{\text{protonation}} = \mathsf{f} \left(\mathsf{structure, hydratation} \right) \\ & \mathsf{M}_n O^{(nv-2)} + \mathsf{H}^+_{\text{solv}} \quad \overleftrightarrow{} \qquad \mathsf{M}_n O \mathsf{H}^{(nv-1)} \quad \mathsf{K}_{n,1} \\ & \mathsf{M}_n O \mathsf{H}^{(nv-1)} + \mathsf{H}^+_{\text{solv}} \quad \overleftrightarrow{} \qquad \mathsf{M}_n O \mathsf{H}_2^{nv} \quad \mathsf{K}_{n,2} \end{split} \qquad \begin{array}{c} -\mathsf{Ln} \ \mathsf{K}_{n,x} = - \ \mathsf{A}(\Sigma S_j - 2 + \mathfrak{m}) \\ & \mathsf{A} = 19,8 \end{split} \\ & \mathsf{OH} \ \mu_1 \qquad p + \mathfrak{m} = 2 \\ & \mathsf{OH} \ \mu_2 \qquad p + \mathfrak{m} = 1 \ \mathsf{ou} \ 2 \\ & \mathsf{OH} \ \mu_3 \qquad p + \mathfrak{m} = 1 \end{aligned} \qquad \begin{array}{c} \Sigma \ \mathsf{S}_j = \ \Sigma_i \ \mathsf{S}_{\mathsf{Me}} + \mathfrak{p} \ \mathsf{S}_{\mathsf{H}} + \mathfrak{m}(1 - \mathsf{S}_{\mathsf{H}}) \\ & \mathsf{S}_{\mathsf{H}} = 0,8 \end{split}$$

Model of multisite complexation , MUSIC²

Good valuation of surface charge and of point of zero charge

Surface energy at the atomic scale

T. Hiemstra et al., J. Colloid Interface Sci. 184, 680 (1996)

J.P. Jolivet et al., J. Mater. Chem., 2004, 14, 3281

Surface Energy Effect

Metastable Object

 γ decreases when the charge density, σ , increases

J.P. Jolivet et al., J. Mater. Chem., 2004, 14, 3281

Surface Energy Effect

Isotropic Nanoparticles

Size = f(Surface Energy)

J. of Colloid Interface Sci., 1998, 205, 205 & J. Mater. Chem., 2003, 13, 877

Isotropic Nanoparticles

Size = f(Surface Energy)

Precipitation of FeCl₂ / FeCl₃ : Fe₃O₄ magnetite *IRM, Hyperthermia*

After 3 weeks aging at pH 13.5 at 25°C

Stability of nanoparticle = f(solution acidity), reversible phenomena

Anisotropic Nanoparticles

Precipitation of $AI(NO_3)_3$: γ -AIO(OH) boehmite

Wulff construction : Equilibrium crystal = faces of lesser energy

> Morphology = f(Surface Energy of each face)

Anisotropic Nanoparticles

Handbook of Porous Materials, Ed. F. Schüth, Wiley-VCH, 2002, p. 1591 & J. Mater. Chem., 2004, 14, 1-9

Precipitation of Al(NO₃)₃ : γ-AlO(OH) boehmite

Anisotropic Nanoparticles

Boehmite → Gama Alumina : topotactic transformation

→ Morphology is kept after the heat treatment

Euzen, P., et al., Handbook of Porous Solids, Wiley-VCH Verlag GmbH, 2002, Vol. 3, 1591-1676

Surface complexation

Complexing molecules and growth of cristallites

Precipitation of $AI(NO_3)_3$ with polyols: γ -AIO(OH) boehmite

[polyol]=0.007M

Precipitation of AI(NO₃)₃ with polyols: γ -AIO(OH) boehmite

The size of nanoparticles decreases with the length of polyols

Precipitation of Al(NO₃)₃ with polyols: γ-AlO(OH) boehmite

[polyol] 10 % mol

Chiche D. (2007), Thesis UPMC- IFP, Paris 6 Heterogenous Catalysts, Elsevier, 2006, 393

Precipitation of Al(NO₃)₃ with polyols: γ-AlO(OH) boehmite

Stabilisation énergétique des faces (101)

Phys. Chem. Chem. Phys., 2009, 11, 11310 - 11323

E_{ads}(0K) = -118 kJ.mol⁻¹

Preferential adsorption upon lateral surfaces : concavitie and stabilisation

Phys. Chem. Chem. Phys., 2009, 11, 11310 - 11323

Surface complexation by hydroxy carboxylate

Lower reactivity of (010) face due to μ_2 -OH sites.

Increase of (101) face stabilization with the distance between –COOH groups: more available adsorption sites.

Surface complexation and shape of anatase nanoparticles

Anatase nanoparticles obtained without complexant

In presence of oleic acid

(100) and (001<mark>) faces</mark> 30 nm

Matijevic, J. Colloid Interface Sci. 103 (1985)

Durupthy, O.; Bill, J.; Aldinger, F. Cryst. Growth Des. **2007**, 7, 2696

Ethylenediamine

(100) faces

Sugimoto, T.; Zhou, X. P.; Muramatsu, A. *Journal of Colloid and Interface Science* **2003**, *259*, 53

In presence of glutamic acid

What are the relevant parameters to control the growth of nanoparticles ?

Pigment : paints, papers, plastics, cosmetic and pharmacy Photocatalysis, photovoltaic ...

3 polymorphs

Cristalline structure depends on synthesis conditions

Thermolysis of TiCl₄ : TiO₂ rutile

Weak nucleation : slow precipitation High solubility : favour the growth

Thermolysis of TiCl₄ with chloride : TiO₂ brookite

A. Pottier, S. Cassaignon, C. Chaneac, F. Vilain, E. Tronc, J.P. Jolivet, J. Mater. Chem., 13, 877 (2003)

Thermolysis of TiCl₄ with chloride : TiO₂ brookite

Structure control by a complexing agent

A. Pottier et al. J. Chem. Mater. 2001, 11, 1116

Hydrolysis of Ti(III)

S. Cassaignon et al., J. Phys. Chem. Solids (2007), doi:10.1016

New Morphologies for TiO₂

Growth control and Seeding

TiO₂ Rutile : TiCl₄ 3 M / HNO₃ 15M / 120°C 24 hours

Q. Huang, L. Gao, Chem. Letters, 2003, 32,7

JACS, 2007, 129 (18), 5904

Properties of long nanorods

Collaboration : Patrick Davidson, LPS Orsay, Pierre Panine, ESRF Grenoble

Dessombz A., Thesis UPMC-Orsay, Paris 11

JACS, 2007, 129 (18), 5904

Properties of long nanorods

Oriented aggregation: Increase of the photocatalytic activity

JACS, 2007,129 (18),5904 Collaboration : Patrick Davidson, LPS Orsay, Pierre Panine, ESRF Grenoble

Anisotropy of electric properties; Photoactivation of current

Conclusion

• Aqueous chemistry of metal cations: environmentally friendly, Low cost

- Versatile way to tune oxide nanoparticles Size, shape and crystalline structure
- Identification of relevant synthesis parameters to tune size and shape:

pH and acidity, used of polyfunctionnal complexant : Polyols, Polycarboxylates

Surface energy and solubility of nanoparticles are the driving force of their evolution

Acknowledgements

Sophie Cassaignon, MdC Olivier Durupthy, MdC David Portehault, CR

Jean-Pierre Jolivet, Prof. Elisabeth Tronc, CR

Tamar Saison, Hanno Kamp, David Chiche, Nicolas Chemin, Arnaud Dessombz, (PhD) Agnès Pottier, Cédric Froidefond, Micaëla Nazaraly Yuheng Wang, Anne Carton, Roberta Brayner, Pierre Gibot (Post Doc), Christelle Roy (Master)

Microscopy staff Gervaise Mosser, Patrick Le Griel (LCMC) Patricia Beaunier (UPMC) Dominique Jalabert, Fabienne Warmont (Univ. Orléans)

Funding

IFP French institute of petrol , Lyon Rhodia, Aubervilliers Draka Comtech, Marcoussis Saint – Gobain Research, Aubervilliers Lhoist, Belgium

University Pierre et Marie Curie, Paris, France

Jean-Yves Bottero, Mark Wiesner

Mélanie Auffan , Jérôme Rose CEREGE

Thank you for your attention