NANOGÉNOTOXICOLOGIE

La génotoxicité des Quantum dots* et le rôle du stress oxydant : Implications sur l'environnement et la santé humaine

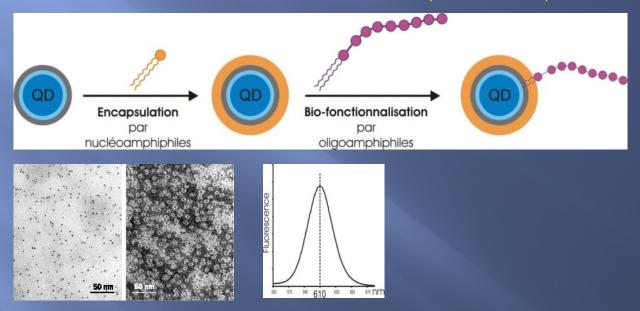
*Programme PNANO ANR-2008, **Projet NANAN** (<u>NAN</u>o-plateforme multifonctionnelle dérivée d'<u>A</u>cides <u>N</u>ucléiques à visées biomédicales).

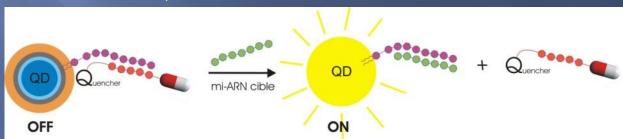
Mélanie AYE

Laboratoire de Biogénotoxicologie et Mutagenèse environnementale, EA 1784.

Pr Alain Botta

- Dr Michel De Méo
- Pr Yves Jammes





Le projet NANAN

* Encapsulation et biofonctionnalisation des QDs (CdSe/ZnS)

* Pénétration intracellulaire et applications biomédicales (imagerie, ciblage et délivrance de médicaments)

Evaluation de l'activité génotoxique des premiers échantillons NANAN (QDs micelles)

Matériels et méthodes

- Activité toxique et génotoxique des QDs
- Photogénotoxicité des QDs
- Implication du stress oxydant dans l'activité génotoxique des QDs
- Comparaison avec l'activité génotoxique du CdCl₂

Evaluation de l'activité génotoxique des premiers échantillons NANAN (QDs micelles)

Matériels et méthodes

- Test de viabilité cellulaire au WST-1
- Test des comètes
- Test des micronoyaux
- Test d'Ames

Chaque test est réalisé ± S9 mix et ± Irradiation (spectre complet, 290 nm – 800 nm ou UVA-visible, 320 nm – 800nm)

Test de viabilité au WST-1

- Test colorimétrique qui mesure la viabilité et le taux de prolifération cellulaire à partir de l'activité des déshydrogénases mitochondriales.
- Basé sur le clivage de sels de tétrazolium incolores WST-1 en dérivés formazan de couleur jaune, quantifiables par spectrophotométrie à 420-480 nm.

Test de viabilité au WST-1

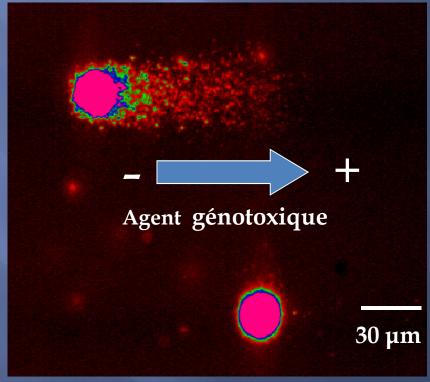
- 99 % de viabilité cellulaire observée pour toutes les doses testées (NI)
 - Dose maximale : 0,5 μg/ml
 - Temps de contact : 24 h
- 62,5% de viabilité cellulaire à la dose maximale de 0,5 μg/ml + 45 KJ/m²

Absence de cytoxicité mais présence d'une légère phototoxicité

Le test d'Ames

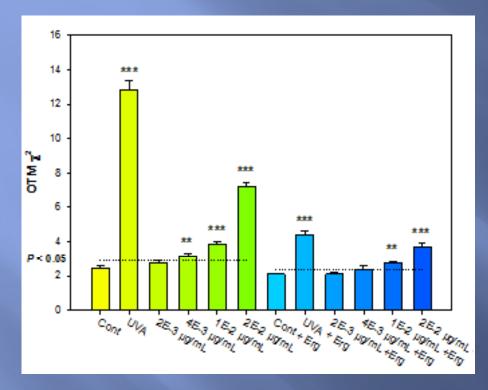
- Mesure du pouvoir mutagène des xénobiotiques sur des souches de Salmonella typhimurium HIS -.
- Dénombrement des révertants HIS + induits par les agents mutagènes.

Le test d'Ames


- Souches utilisées : TA97a, TA98, TA100 et TA102
- ➤ Méthode avec pré-incubation en milieu liquide

Pas d'effet mutagène sur les souches ± S9 mix ± Irradiation

Le test des comètes

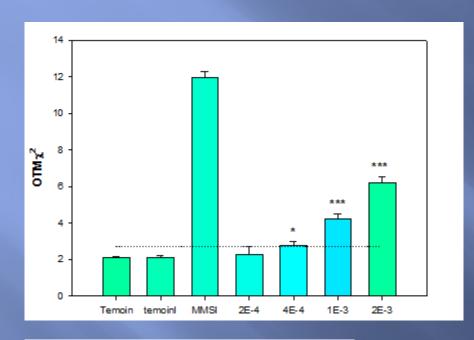

Micro-électrophorèse permettant de détecter les lésions primaires de l'ADN (cassures simple et double brin) et l'induction des systèmes de réparation chez des cellules eucaryotes individuelles.

Cellule lésée

Cellule intacte

Le test des comètes : QDs – S9 Mix et QDs + L-ergothionéine

Limite de significativité:.....


Concentration Minimale Génotoxique : 0,003 µg/ml
Concentration Minimale Génotoxique avec L-Ergothionéine : 0,005 µg/ml

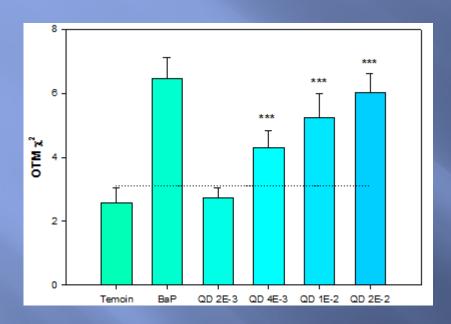
Action significative de l'agent antioxydant sur l'activité génotoxique des QDs (1,7 fois) : Implication du stress oxydant dans la

Implication du stress oxydant dans la réponse génotoxique.

Induction de cassures sur l'ADN des cellules CHO

Le test des comètes : QDs + Irr

Limite de significativité :


Augmentation importante de l'effet génotoxique après irradiation.

Concentration Minimale Génotoxique : 0,0004 µg/ml

Action significative de la photoactivation sur l'activité génotoxique des QDs (8 fois) : Potentialisation de la réponse génotoxique

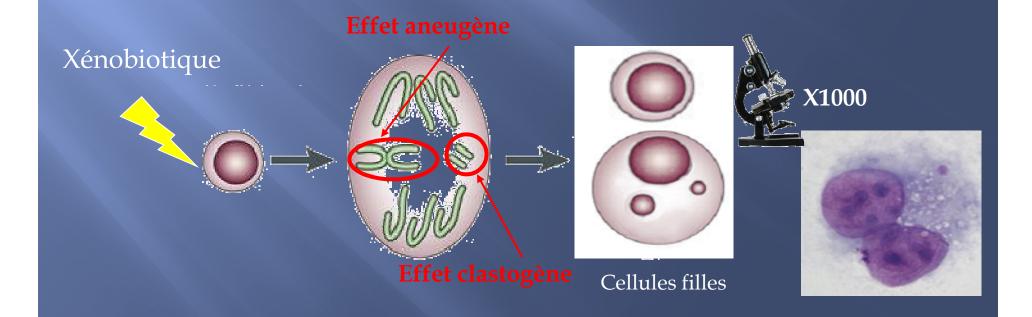
Induction de cassures sur l'ADN des cellules CHO irradiées

Le test des comètes : QDs + S9 Mix

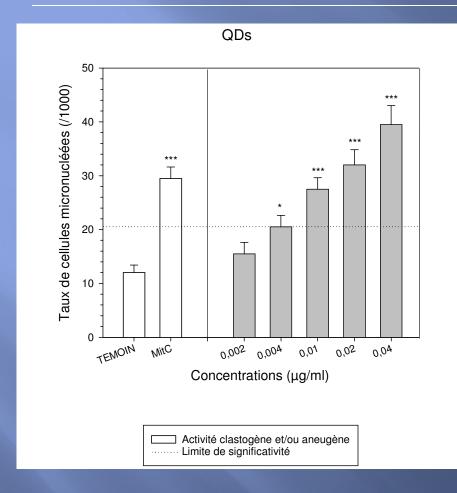
Limite de significativité :

Activité génotoxique équivalente à celle des QDs sans S9 mix

Concentration Minimale Génotoxique : 0,003 µg/ml


Pas d'effet du S9Mix sur l'activité génotoxique des QDs : Pas de formation de métabolites secondaires génotoxiques

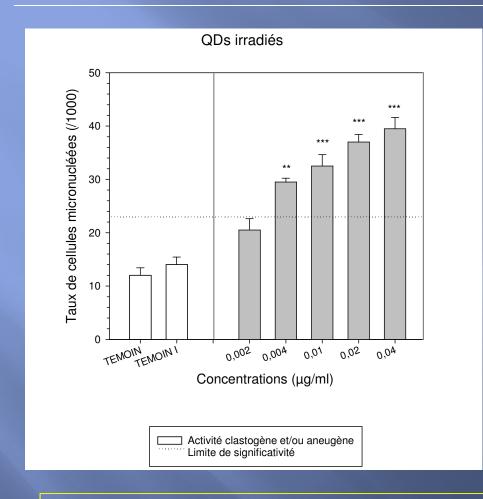
Induction de cassures sur l'ADN des cellules CHO après métabolisation


Le test des micronoyaux

• Les micronoyaux :

- Entités nucléaires indépendantes du noyau principal présentes au sein du cytoplasme des cellules en interphase.
- > Fragments de chromosomes ou de chromosome(s) entier(s) non intégrés au cours de la division cellulaire.
- Conséquences de cassures chromosomiques (effet clastogène) ou de dysfonctionnements du fuseau mitotique (effet aneugène).

Le test des micronoyaux : QDs - S9 Mix

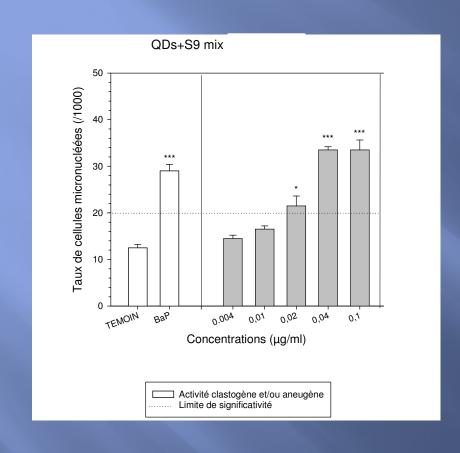


Concentration Minimale Clastogène et/ou Aneugène:

 $0.01 \mu g/ml$

Induction de micronoyaux dans les cellules CHO

Le test des micronoyaux : QDs + Irr


Irradiation spectre solaire total: 45 KJ/m²

Concentration
Minimale
Clastogène et/ou
Aneugène:

 $0,001 \mu g/ml$

Augmentation d'un facteur 10 de l'effet clastogène après irradiation

Le test des micronoyaux : QDs + S9 Mix

Concentration
Minimale Clastogène:

 $0.017\mu g/ml$

Pas ou peu d'effet du S9Mix sur l'activité clastogène/aneugène des QDs

Discussion

- Activité génotoxique des QDs (NANAN_micelles) qui se potentialise sous l'action du spectre total.
- Pas de formation de métabolites secondaires génotoxiques
- L'activité genotoxique s'explique en partie par la présence d'un stress oxydant.

Comparaison avec l'activité génotoxique du CdCl2

- Activité génotoxique du CdCl₂ > QDs
- Potentialisation de la génotoxicité du CdCl2 par Irradiation
- Implication du stress oxydant plus importante pour le CdCl₂ que pour QDs

Suite des travaux

- Effets génotoxiques des QDs sur les cellules humaines en culture (fibroblastes; mélanocytes)
- Dégradation dans le temps et relargage de Cd²⁺?
- Etude des effets in vivo chez le rat

- stress oxydant (TBARS, VitC réduite)
- réaction inflammatoire (cytokines, hsp...)
- p53
- Profil d'expression gènes (PCR quantitative)
- Histologie